Robot Learning

Reinforcement learning

Last time...

- Dynamic programming in deterministic systems
- Dynamic programming in stochastic systems
- Markov decision processes

We assumed we know the transition function.

• Value/policy iteration

Autonomous helicopter aerobatics through apprenticeship learning Abbeel et al., IJRR 2010

Today...

- Model-based reinforcement learning
- Model-free reinforcement learning

A great tutorial

ICML 2018 tutorial on "Optimization perspectives on learning to control" by Ben Recht:

https://youtu.be/hYw_qhLUE00

Infinite horizon MDPs

State: $s \in S$ Action: $a \in \mathcal{A}$ Transition: $s_{t+1} \sim P(\cdot | s_t, a_t)$ Reward: $r_t = R(s_t, a_t)$ Discount: $\gamma \in [0,1)$ Policy: $\pi: \mathcal{S} \to \mathcal{A} \text{ or } \pi: \mathcal{S} \to \Delta \mathcal{A}$ Goal:

$$\pi^* = \arg \max_{\pi} \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t R(s_t, \pi(s_t)) \right]$$

CSCI 699: Robot Learning - Lecture 4

As a constrained optimization problem

$$\begin{array}{ll} \text{maximize} & \mathbb{E}_{w} \left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, a_{t}) \right] \\ \text{subject to } s_{t} = f(s_{t}, a_{t}, w_{t}) \end{array}$$

subject to
$$s_t = f(s_t, a_t, w_t)$$

 $a_t = \pi(s_t)$

Now, what if we don't know the transition function *f*?

As a constrained optimization problem

Model-based RL

$$\begin{array}{ll} \text{maximize} & \mathbb{E}_{w} \left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, a_{t}) \right] \\ \text{subject to } s_{t} = f(s_{t}, a_{t}, w_{t}) \\ a_{t} = \pi(s_{t}) \end{array}$$

- 1. Collect some data from the environment: $(s_t, a_t, r_t, s_{t+1})_{t=1}^N$.
- 2. Use supervised learning to learn \hat{f} and \hat{R} (if not already known).
- 3. Solve the approximate problem assuming \hat{f} and \hat{R} .

Approximate dynamic programming

maximize π $\mathbb{E}_{w}\left[\sum_{t=0}^{\infty}\gamma^{t}R(s_{t},a_{t})\right]$ subject to a = f(a, a, w)

subject to
$$s_t = f(s_t, a_t, w_t)$$

 $a_t = \pi(s_t)$

Remember Bellman equation:

$$Q(s,a) = R(s,a) + \gamma \mathbb{E}_{s'|s,a} [\max_{a' \in \mathcal{A}} Q(s',a')]$$

Collect some data from environment and learn a *Q*-function.

Approximate dynamic programming

$$\begin{array}{l} \underset{\pi}{\operatorname{maximize}} \quad \mathbb{E}_{w} \left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, a_{t}) \right] \\ \text{subject to } s_{t} = f(s_{t}, a_{t}, w_{t}) \\ a_{t} = \pi(s_{t}) \\ Q(s_{t}, a_{t}) \approx R(s_{t}, a_{t}) + \gamma \max_{a' \in \mathcal{A}} Q(s_{t+1}, a') \\ & \bullet \\ Q_{\text{new}}(s_{t}, a_{t}) = (1 - \eta) Q_{\text{old}}(s_{t}, a_{t}) + \eta \left(R(s_{t}, a_{t}) + \gamma \max_{a' \in \mathcal{A}} Q_{\text{old}}(s_{t+1}, a') \right) \end{array}$$

This is the SARSA algorithm.

Approximate dynamic programming

maximize

$$\mathbb{E}_{w} \left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, a_{t}) \right]$$
subject to $s_{t} = f(s_{t}, a_{t}, w_{t})$
 $a_{t} = \pi(s_{t})$
 $Q(s_{t}, a_{t}) \approx R(s_{t}, a_{t}) + \gamma \max_{a' \in \mathcal{A}} Q(s_{t+1}, a')$
 $Q_{\text{new}}(s_{t}, a_{t}) = Q_{\text{old}}(s_{t}, a_{t}) + \eta \left(R(s_{t}, a_{t}) + \gamma \max_{a' \in \mathcal{A}} Q_{\text{old}}(s_{t+1}, a') - Q_{\text{old}}(s_{t}, a_{t}) \right)$
This is TD error. Many algorithms (e.g., DQN) use it.

$$\begin{array}{ll} \text{maximize} & \mathbb{E}_{w} \left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, a_{t}) \right] \\ \text{subject to } s_{t} = f(s_{t}, a_{t}, w_{t}) \\ & a_{t} = \pi(s_{t}) \end{array}$$

Idea: Formulate it as an unconstrained optimization to solve for π .

But the set of possible π 's are too large. Instead, make it a stochastic policy with parameters θ .

 ∇

$$J(\theta) = \mathbb{E}_{\tau \sim P_{\theta}(\tau)}[R(\tau)]$$
$$= \int P_{\theta}(\tau)R(\tau)d\tau$$

$$\begin{split} \theta J(\theta) &= \int \nabla_{\theta} P_{\theta}(\tau) R(\tau) d\tau \\ &= \int R(\tau) \nabla_{\theta} P_{\theta}(\tau) d\tau \\ &= \int R(\tau) P_{\theta}(\tau) \frac{\nabla_{\theta} P_{\theta}(\tau)}{P_{\theta}(\tau)} d\tau \\ &= \int R(\tau) P_{\theta}(\tau) \nabla_{\theta} \log P_{\theta}(\tau) d\tau \\ &= \mathbb{E}_{\tau \sim P_{\theta}(\tau)} [R(\tau) \nabla_{\theta} \log P_{\theta}(\tau)] \end{split}$$

$$\begin{aligned} \nabla_{\theta} J(\theta) &= \mathbb{E}_{\tau \sim P_{\theta}(\tau)} [R(\tau) \nabla_{\theta} \log P_{\theta}(\tau)] \\ \log P_{\theta}(\tau) &= \log \left(P(s_0) \prod_{t=0}^{\infty} P(s_{t+1} \mid s_t, a_t) \pi_{\theta}(a_t \mid s_t) \right) \\ &= \log P(s_0) + \sum_{t=0}^{\infty} \log P(s_{t+1} \mid s_t, a_t) + \sum_{t=0}^{\infty} \log \pi_{\theta}(a_t \mid s_t) \\ \nabla_{\theta} \log P_{\theta}(\tau) &= \sum_{t=0}^{\infty} \nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t) \end{aligned}$$

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim P_{\theta}(\tau)} \left[\sum_{t=0}^{\infty} \nabla_{\theta} \log \pi_{\theta}(a_{t} \mid s_{t}) \sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, a_{t}) \right]$$

Because of causality:
$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim P_{\theta}(\tau)} \left[\sum_{t=0}^{\infty} \nabla_{\theta} \log \pi_{\theta}(a_{t} \mid s_{t}) \sum_{t'=t}^{\infty} \gamma^{t'} R(s_{t'}, a_{t'}) \right]$$

This is the REINFORCE algorithm. It is also known as policy gradient.

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim P_{\theta}(\tau)} \left[\sum_{t=0}^{\infty} \nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t) \sum_{t'=t}^{\infty} \gamma^{t'} R(s_{t'}, a_{t'}) \right]$$

This is on-policy.

Dn-policy vs. off-policy
maximize
$$\mathbb{E}_{w}\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, a_{t})\right]$$

subject to $s_{t} = f(s_{t}, a_{t}, w_{t})$
 $a_{t} = \pi(s_{t})$

- 1. Collect some data from the environment: $(s_t, a_t, r_t, s_{t+1})_{t=1}^N$.
- 2. Use supervised learning to learn \hat{f} and \hat{R} (if not already known).
- 3. Solve the approximate problem assuming \hat{f} and \hat{R} .

On-policy vs. off-policy

$$\max_{\pi} \mathbb{E}_{w} \left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, a_{t}) \right]$$
subject to $s_{t} = f(s_{t}, a_{t}, w_{t})$
 $a_{t} = \pi(s_{t})$
 $Q(s_{t}, a_{t}) \approx R(s_{t}, a_{t}) + \gamma \max_{a' \in \mathcal{A}} Q(s_{t+1}, a')$
 $Q_{\text{new}}(s_{t}, a_{t}) = (1 - \eta)Q_{\text{old}}(s_{t}, a_{t}) + \eta(R(s_{t}, a_{t}) + \gamma \max_{a' \in \mathcal{A}} Q_{\text{old}}(s_{t+1}, a'))$

This is the SARSA algorithm.

Today...

We relaxed the assumption that we have the transition model.

We still assume we have access to the reward function/samples.

Next time...

What if we do not have access to the reward function/samples but some expert trajectories?

• Imitation learning

• Inverse reinforcement learning